
The MSPress
Journal

Vol 4 No 1 2017

Essay

The MSPress Journal, Vol 4, No 1 (2017)

Introduction
A biomarker is “a characteristic that is objectively 
measured and evaluated as an indicator of nor-
mal biological processes, pathogenic processes, or 
pharmacologic responses to a therapeutic interven-
tion.”1 The use of biomarkers in detecting or diag-
nosing disease and monitoring a body’s response to 
therapy is a fundamental aspect of modern medical 
practice. For example, diabetes can be diagnosed 
with serum glucose levels, cardiovascular events 
are indicated by serum cardiac troponin, and preg-
nancy can be detected early using human choriogo-
nadotropin. With an unprecedented amount of 
data—notably omics (genomic, proteomic, lipid-
omic, metabolomic, etc.) data—and the potential to 
provide more accurate, less expensive, less inva-
sive, and earlier diagnoses, it is no wonder that the 
biomedical community has dedicated many efforts 
to discover and validate new markers.
	 However, very few of the newly published 
“biomarkers” are utilized in clinical settings. For 
example, in 2011, there were 7,720 publications of 
new biomarkers but only 407 new biomarker pat-
ents.2 Furthermore, despite thousands of publica-
tions regarding novel cancer biomarkers, very few 
markers have received FDA approval or clearance.3 
And before the approval of those markers within 
the past few years, there had been no new biomark-

ers approved for clinical oncology use for over 25 
years.4 While one setback is the amount of time re-
quired to obtain FDA approval, the primary reason 
for the lacking utilization of newly published bio-
markers is their failure to perform properly in the 
clinical setting. For example, a multi-marker diag-
nostic panel for ovarian carcinoma had a published 
sensitivity of 95% and specificity of 99.4%.5 How-
ever, when the Early Detection Research Network 
tested the markers, they found that in contrast to 
the excellent performance in the authors’ data, the 
“true” sensitivity of the 6 markers was only 52%—
approximately as “good” as a coin toss.4 Of many 
issues leading to the authors’ optimistic results, 
perhaps the greatest factor was an improper sta-
tistical analysis due to a biased external validation 
procedure.
	 While the reasons for the failure of the 
discovered biomarkers include problems in sam-
ple collection (from biased selection of samples to 
improper care or storage of specimens) and sample 
analysis (such as using incorrect or subpar meth-
ods to prepare the specimens, machine settings 
to obtain data, or steps to process the data), one 
of the main and perhaps most misleading issues 
is improper statistical analysis.5 Several specific 
problems occur in biomarker discovery and predic-
tive modeling—multiple hypothesis testing, data 
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overfitting, and inappropriate validation.6 In this 
report, illustrations of these problems and biomark-
er-appropriate statistical methods to overcome such 
problems are presented. 
	 Before proceeding, it is helpful to consider 
the two major approaches to biomarker discov-
ery.7 The “classical” approach involves testing each 
potential marker individually to test its association 
with the selected outcome/response (diagnosis, 
prognosis, etc.). One common approach is using the 
t-test to identify differences between groups. The 
importance of the new biomarker is directly related 
to the significance of the corresponding test. And 
the final “product” of the classical approach is one 
marker, the measured values of which are predic-
tive of the response of interest. While the classical 
method is typically robust, it is subject to problems 
arising from multiple hypothesis testing and ignores 
multifactorial relationships among markers, which 
may be extremely important in biological systems.7 
The second approach, which I will call the multi-
variable approach, accounts for and includes multi-
factorial relationships. The multivariable approach 
typically involves a statistical model (logistic regres-
sion, partial least squares, etc.) or machine learning 
algorithm (support vector machine, neural network, 
etc.) that has been specially adapted to find and 
utilize only the most important markers. The impor-
tance of the set of markers is often determined by 
the performance of the model (measured by sensi-
tivity, specificity, an ROC curve, etc.) rather than by 
significance levels. Furthermore, the product of the 
multivariable approach is a panel of markers, whose 
values are combined in some way to arrive at a score 
(such as the probability of disease for a diagnostic 
marker, a set of probabilities for a set of disease 
stages for a monitoring biomarker, or a predictive 
indicator of longevity for a prognostic marker). 
While this approach often suffers from a variety of 
challenges, such as overfitting and improper valida-
tion, there are continuous advancements in compu-
tational technology and statistical methodology to 
improve the models and algorithms. 

Multiple Hypothesis Testing
As the name suggests, multiple hypothesis testing is 
performing a large number of statistical tests to look 
for some kind of statistically significant relationship. 
For instance, subjecting each variable/biomarker to 
a Student’s t-test is one method of multiple hypoth-
esis testing. However, when one finds a seemingly 
significant result (i.e. p < 0.05 or another selected 
threshold) using this method, it is very likely that 
the result is a false-positive. In fact, with a p-value 
cutoff of 0.05, we expect that 5% of completely use-
less markers will have significant results!
	 One of the most widespread approach-
es—perhaps a current standard of biomarker re-
search—is the inclusion of a validation study. This 
approach involves collecting 2 samples; biomarkers 
are discovered in the first set of data, and if they 
also exhibit significant relationships in the valida-
tion set, they are deemed important. This method is 
extremely effective at reducing false positives, as the 
chances of useless marker being found significant 
in both samples of data is very small. Assuming a 
p-value cutoff of 0.05, it is expected that only 0.25% 
of markers would be found significant. However, 
this can still pose a problem when the number of 
markers examined is very large, as is the case in 
many biomarker studies. Thus, some researchers 
use a much lower p-value threshold (such as 0.001) 
to account for the problem of multiple hypothesis 
testing. However, while the lower threshold does 
reduce the number of false positives, the method is 
not stringent enough to properly control the num-
ber of false positives identified.8

	 One of the more popular methods to prop-
erly account for multiple hypothesis testing is using 
a false-discovery-rate (FDR) adjustment, which 
controls the number of false-positives discovered. 
Mathematically, it is an adjustment of the p-value 
to make it a larger “q-value.” Like the p-value, the 
q-value is also an indication of significance. How-
ever, the q-value cutoff used is the expected pro-
portion of false positive markers among all markers 
with a significant q-value. Note the key difference 
between the implications of the p-value and FDR 
adjustment: while we expect that 5% of all markers 
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tested will be incorrectly labeled as significant with 
a p-value less than 0.05, only 5% of markers with 
a q-value less than 0.05 will have been incorrectly 
labeled.
	 Suppose we simulate a study examining 
10,000 gene expression markers in 200 patients 
(100 controls and 100 with cancer), where only 5 
of the markers have a real relationship with cancer. 
Figure 1 shows the number of false positives from 
applying Student t-tests to the data. Using a p-val-
ue cutoff of 0.05, 507 markers are falsely identified 
as significant. Using a lower p-value threshold, 
0.001, provides better results—only 8 false positive 
markers. However, using the FDR adjusted p-val-
ues with a q-value cutoff of 0.05, no false posi-
tives are identified. Also, note that when using the 
validation set of data to find markers that continue 
to be significant, the number of false-positives de-
creases dramatically—only 28 with a p-value cutoff 
of 0.05 (still too many!) and none with a p-value 
cutoff of 0.001.

Figure 2 shows the proportion of true positives (# 
true positives / # of markers with significant re-
sults) identified by the various methods. In every 
case, the 5 “true” markers were identified, but note 
the persisting problem of false positives. However, 

with the FDR approach (both in the first study and 
the validation study) and the 0.001 p-value cutoff 
approach (only with the validation study) identified 
only correct markers (all 5, in this case). Hence, it 
is apparent that if efforts are to be focused on true 
markers, it is imperative to appropriately account 
for the problem of multiple hypothesis testing. 
Simply performing a validation study (while con-
tinuing to have no p-value cutoff adjustment from 
the classic 0.05) or lowering the p-value threshold 
likely won’t be sufficient. Identifying studies with 
potentially misleading conclusions based on mul-
tiple hypothesis testing should be easy to identify, 
since authors should list their criteria for claiming 
a marker is statistically significant. In general, be 
wary of any result that is based on p-values and 
be suspicious of results with an abnormally large 
number of significant markers.

Data Overfitting
Data overfitting occurs when a model or classifier 
has incorporated information that is irrelevant to 
the outcome of interest and is characteristic only to 
a particular sample of data. Due to the large num-
ber of markers, some markers may have a seeming-
ly important relationship with the outcome vari-
able, and an overfit model is one that includes this 
information. Typically, if there are fewer than 10-

Figure 1: Number of False Positives from Student t-tests of 
10,00 Markers Using Various Significance Criteria

Figure 2: Proportion of True Positives from Student t-tests of 
10,000 Markers Using Various Significance Criteria
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20 samples per variable, the model will be overfit.9 
While the model may perform exceptionally well 
on the sample of data it was developed on, when 
applied to other sets of data (which will likely not 
contain the same falsely important relationships), 
it will perform worse. Perhaps the biggest issue 
in biomarker research regarding overfitting is the 
large discrepancy between reported performance 
and true performance, if the reported performance 
was estimated by applying the model to the same 
data used to train the model.

	 Figure 3 shows the drastic differences in 
area under the curve estimate (AUC; a measure 
of model accuracy) between the apparent perfor-
mance in the training set and the true performance 
in a validation study for increasing numbers of 
markers. In Figure 3 (a), a stepwise logistic regres-
sion model, which does not control for overfitting, 
suffers more from overfitting with increasing num-
bers of markers. 
	 While the lasso logistic regression mod-
el demonstrated in Figure 3 (b) is designed to 
account for overfitting, notice that the apparent 
performance is always better than the true per-
formance. Thus, it is critical to be wary of claims 
of high performance; even worthless models can 
have near-perfect performance in the training 
sample! The only way to get an accurate estimate 
of a model’s performance is through proper vali-
dation. Therefore, also be wary of results that do 
not explicitly demonstrate results from a validation 
study.

Model Validation
Since the value of a multivariate panel of markers 
is largely related to its predictive performance, it 
is imperative to obtain accurate estimates of mod-
el performance. The optimal method is an inde-
pendent and external validation, where another 
study is performed by other researchers to test the 
proposed panel of markers. The results of such an 
analysis should be indicative of the model’s true 
performance. A common method when an external 
validation is not yet available is where researchers 
arbitrarily divide their initial sample into two—one 
becomes the sample on which to develop the mod-
el, and the other is the sample on which the model 
is tested to provide performance estimates (a “syn-
thetic” validation study). However, this method is 
inefficient unless there are thousands of subjects. A 
proper implementation of internal validation, such 
as cross-validation, is much better (though still less 
ideal than an independent validation).10

	 Unfortunately, there are a variety of ways to 
invalidate the validation process, usually resulting 
in biased and optimistic estimates of model perfor-

Figure 3 (a): Stepwise Logistic Regression of Data Without 
Important Markers

Figure 3 (b): Lasso Logistic Regression of Data With 10% 
Important Markers

Differences in Apparent AUC and True AUC Estimates
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mance. Independent (often called “external”) val-
idation is the testing of a finalized model on a new 
population to assess its predictive capacity. Any 
variation from this straightforward procedure will 
invalidate the results. For example, performance 
estimates from validation using an independent 
study are likely biased and optimistic if: 1) the in-
dependent set of data is accessed or utilized in any 
form other than testing the finalized model, 2) the 
model performance results from the independent 
set of data inform the selection of markers, statis-
tical methodology, or model parameters, or 3) the 
independent study is not in fact independent (i.e. 
if any of the subjects are utilized in both studies). 
Cross-validation involves splitting the data into a 
training and validation samples, following the steps 
of proper independent validation, and then itera-
tively repeating the data splitting process so that 
each subject receives a predicted outcome based 
on a model that was trained on data that did not 
include that subject. Thus, every sample is included 
(at separate times/iterations) in both training and 
validation samples. Like external validation howev-
er, any variation from the procedure will invalidate 
the results. For example, performance estimates 
from cross-validation are likely biased and optimis-
tic when every stage of the model training proce-
dure (including method selection, marker selec-
tion, parameter optimization, and any step that 
directly or indirectly relies on information from the 
response variable) is not repeated in each iteration 
of the cross-validation algorithm.
	 Figure 4 demonstrates the effects of incor-
rect validation procedures on the AUC. The grey 
bar represents the AUC estimate from a correctly 
performed independent validation (with 10,000 
samples to ensure accuracy), and the orange bar 
demonstrates the erroneous optimism included in 
the AUC estimate from incorrect validation (either 
independent validation or cross-validation). Note 
that inappropriate validation leads to biased and 
optimistic results. In case 1, the assumption of 
an “independent” validation was violated, as the 
subjects from both the training and validation sets 
were pooled initially to identify the top markers 

by using a t-test. Following that procedure, a lasso 
logistic regression model was trained using the 
training set and only the selected markers (which 
were, in part, chosen by the validation set!). Notice 
how poorly the lasso logistic regression model per-
formed on a truly independent set of data. In case 
2, the cross-validation procedure was performed 
incorrectly since the parameters for a sparse par-
tial least squares discriminant analysis (sPLS-DA) 
model were optimized initially, and the optimal 
values (likely just optimal for the given set of data!) 
were fixed during the cross-validation procedure, 
rather than optimized at every iteration. In case 
3, the top markers were selected initially by a 
t-test, and only those markers were included in the 
cross-validation procedure; the cross-validation 
procedure should have included the marker selec-
tion step in every iteration of the procedure. Thus, 
for the sake of accurate estimates of performance, 
it is crucial that validation is done correctly. Unfor-
tunately, it is nearly impossible to detect errors in 
others’ validation studies.

Figure 4: Difference Between AUC in Correct and Incorrect 
Validation Procedures 
      Case 1: Violation of Independent External Validation 
      Case 2: Violation of Repeated Parameter Optimization 
                     in Cross-Validation
      Case 3: Violation of Repeated Marker Selection 
                     in Cross Validation



6The MSPress Journal, Vol 4, No 1 (2017)

Barnes: Statistical Analysis

Conclusion
Biomarkers have the potential to greatly enhance 
care provided to patients—through providing 
better diagnostic and prognostic information, both 
of which can inform decision making and be cor-
related to important patient outcomes. Yet, despite 
dedicated efforts, very few new biomarkers are 
being introduced in clinical settings. While their 
initial performance may seem promising, real-life 
implementation is often lacking. Why such a dis-
parity? In large part, the inappropriate use and/
or understanding of statistical methods for bio-
marker research can result in biased and optimistic 
estimates of diagnostic/prognostic performance 
or overstatements on the importance of a certain 
biomarker. It is thus crucial for the rising gener-
ation of physicians and scientists to understand 
such issues, recognize and correct mistakes, and 
help bring about the changes necessary so effective 
biomarkers can be discovered and translated into 
clinical practice.
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